

SILIGURI INSTITUTE OF TECHNOLOGY COMPUTER SCIENCE & ENGINEERING

COURSE FILE 1ST SEM, 2ND YEAR, 2020

SEC – B

PAPER DESCRIPTION : Computer Organization

PAPER CODE : PCC CS 302 & PCC CS 392

Course File

Course Title: Computer Organization

Code : PCC CS302 & PCC CS392

Semester:- <u>1st</u> Year:- <u>2nd</u>

Name of the Faculty: Prof. Jayashree Singha

Internet Homepage:

E-mail: jaysin31m85@gmail.com

Lecture			Practical
Monday 11:40 AM - 12:30 PM	Wednesday 10: 50 AM - 11:40 AM	Thursday 10: 50 AM - 11:40 AM	Tuesday 2:10 PM - 4:40 PM (B1) Thursday 2:10 PM - 4:40 PM (B2)

Hours for meeting students: Monday to Friday 4.40 PM -5.30 PM

i) Course Objective

Students will be able to have a comprehensive understanding of the basic structure and operation of a digital computer.

ii) Course Outcomes

i. After completion of this course the students are expected to be able to demonstrate following knowledge, skills and attitudes.

The student will be able to:

		Target
PCC CS302.1	Describe Stored Program Digital Computer System. [B.T. LEVEL* 2]	60% Marks
PCC CS302.2	Identify & apply appropriate procedures and algorithms of Computer Arithmetic. [B.T. LEVEL*3]	60% Marks
PCC CS302.3	Explain different aspects of Central Processing Unit (CPU). [B.T. LEVEL* 2]	60% Marks

PCC CS302.4	Understand the fundamentals of Memory Unit and illustrate memory operations. [B.T. LEVEL* 3]	60% Marks
PCC	Explain models of I/O operations & the I/O subsystems.	
CS302.5	[B.T. LEVEL* 2]	
PCC	Identify the micro-instructions and basics of Computer Architecture.	
CS302.6	[B.T. LEVEL* 2]	

ii. Once the student has successfully complete this course, he/she must be able to answer the following questions or perform / demonstrate the following:

SI.	Question	CO
1.	Describe the major components of a digital computer with a suitable block diagram.	1
2.	Explain Booth's algorithm for multiplication of signed 2's complement number in flow chart.	
3.	Explain IEEE 754 standard format for floating point representation in single precision.	2
4.	Compare parallel adder with serial adder.	3
5.	Explain the memory hierarchy pyramid with the relationship of cost, speed and capacity.	4
6.	Explain the difference between full associative and direct mapped cache mapping approaches.	4
7.	Explain the Write-through and Write-back mechanism.	4
8.	Explain the concept of hand shaking in IO operation.	5
9.	Compare the difference between three, two, one and zero address instructions.	6
10.	Compare RISC and CISC architecture.	6

iii) Topic/Unit/Chapter Layout

Chapter No.	Topic/Unit/Chapter	Lecture Hours	Tutorials	Laboratory hours
Chapter - 1	Fundamentals of Computers	3 HRS	-	
Chapter – 2	Data Representation and computer Arithmetic	7 HRS	5	16 HRS
Chapter – 3	Micro-operations and Design of ALU	5 HRS	1	6 HRS
Chapter – 4	Memory Organization	9 HRS	3	6 HRS

Chapter – 5	Computer Instruction Sets	6 HRS	1	
Chapter – 6	Design of Control Unit	1 HRS		
Chapter – 7	Input Output Organization	4 HRS		
Chapter – 8	Parallel Processing	4 HRS		
Total		39 HRS	10 HRS	28 HRS

iv)Textbooks

- 1. Mano, M.M., "Computer System Architecture", PHI.
- 2. Behrooz Parhami "Computer Architecture", Oxford University Press

Reference books :

- 1. Hayes J. P., "Computer Architecture & Organisation", McGraw Hill,
- 2. Hamacher, "Computer Organisation", McGraw Hill,
- 3. N. senthil Kumar, M. Saravanan, S. Jeevananthan, "Microprocessors and Microcontrollers" OUP
- 4. Chaudhuri P. Pal, "Computer Organisation & Design", PHI,
- 5. P N Basu- "Computer Organization & Architecture", Vikas Pub

2) Laboratory

Expt. No.	Experiment Name	Schedule	Marks
P1	Familiarization with IC chips: a) 4:1 MUX, b) 16:1 MUX c) Decoder d) Encoder e) Comparator Truth table verification and clarification from data-book.		15
P2	Design of Adder/Subtractor composite unit	2 HRS	4
Р3	Design of BCD Adder	2 HRS	4
P4	Design of Carry Look-Ahead Adder	3 HRS	2
P5	Use a multiplexer unit to design a composite ALU	3 HRS	4
P6	Use ALU chip for multi-bit arithmetic operation	3 HRS	3
P7	Implement read/write operation using RAM IC	3 HRS	4

P8	Cascade two ICs for a) vertical expansion b) horizontal expansion	3 HRS	4
		Total	40
	Ĭ	University Exams	60

(v) Evaluation Scheme

1) Theory

Evaluation Criteria	Marks
Continuous Assessment	25
Attendance	5
University Exam/External Exam	70
Total	100

* The Internal assessment will be determined through the continuous assessment (CA) which is needed to be submitted 4 times in a semester based on performance of the students assessed as per academic calendar published by the University. The 4 no's of CAs will be based on test/ viva/ quiz/ presentation/seminar/ GD etc. out of which 2 no's preferably would be tests.

Schedule for Continuous Assessment (CA):

CA Description	Schedule
Quiz – 1	
1 st Internal Examination]
Quiz – 2	As per Institute Academic Calendar
Assignment]
2 nd Internal Examination	

Course target attainment levels:

Attainment Level	Inference	Marks
Attainment Level 1	50% of the students have attained more than the target level of that CO	1

Attainment Level 2	60% of the students have attained more than the target level of that CO	2
Attainment Level 3	70% of the students have attained more than the target level of that CO	3

Course Target for the university examination = 60% of the students will get "A" Grade

Target has been set on the basis of last year's performance / result by the students, student quality this year and difficulty level of the course.

University Grading System:

Grade	Marks
0	90% and above
Е	80 - 89.9%
А	70 – 79.9%
В	60 - 69.9%
С	50 - 59.9%
D	40 - 49.9%
F	Below 40%

(vi) Mapping of Course Outcomes and Program Outcomes:

Course	Program Outcomes (PO's)						PS	Os						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
PCC CS302.1	2	1	1	-	-	-	-	-	-	-	-	-	-	2
PCC CS302.2	2	3	3	2	-	-	-	-	3	1	-	-	1	2
PCC CS302.3	2	3	3	2	-	-	-	-	3	1	-	-	1	3
PCC CS302.4	2	3	3	2	-	-	-	-	3	1	-	-	1	3
PCC CS302.5	2	2	1	1	-	-	-	-	-	-	-	-	-	3
PCC CS302.6	2	2	2	1	-	-	-	-	-	-	-	-	-	2
PCC CS302	2	3	3	2	-	-	-	-	3	1	-	-	1	3

- **1** = courses in which the student will be exposed to a topic (BT level 1- 2)
- **2** = courses in which students will gain competency in that area (BT level 3-4)
- **3**= courses in which students will master that skill (BT level 5-6)

(vii) Delivery Methodology

Outcome	Method	Supporting Tools	Demonstration
PCC CS302.1	Structured (partially supervised Whole Class- grouping)	Google class Room, Gmeet Lecture Notes, PPT	IntroductiontoVon-NeumannandHarvard architecture.
PCC CS302.2	Structured (partially supervised Whole Class- grouping)	Google class Room, Gmeet Lecture Notes, PPT	Representation of floating point numbers and solving computer arithmetic using algorithms.
PCC CS302.3	Structured (partially supervised Whole Class- grouping and independent work)	Google class Room, Gmeet Lecture Notes, PPT	Familiarization with the design of CPU.
PCC CS302.4	Structured (partially supervised Whole Class- grouping)	Google class Room, Gmeet Lecture Notes, PPT	Explanation of memory unit and implementation of memory operation.
PCC CS302.5	Structured (partially supervised Whole Class- grouping)	Google class Room, Gmeet Lecture Notes, PPT	Demonstration of the I/O unit of computer.
PCC CS302.6	Structured (partially supervised Whole Class- grouping)	Google class Room, Gmeet Lecture Notes, PPT	Identification of basic computer instructions and micro-operations.

(viii) Assessment Methodology

Outcome	Assessment Tool
PCC CS302.1	
PCC CS302.2	
PCC CS302.3	Internal Test, Quiz, Assignment, University Exam
PCC CS302.4	
PCC CS302.5	

(ix) A. Weekly Lesson Plan

CHAP TER / UNIT	Topic Description (to be quoted from syllabus)	No. of Lectures	Plan Date(s)	Execution Date(s)	Homework/ Assignment/ Quiz
Ι	Fundamentals of Computers				
	Concept of basic components of a digital computer, Basic concept of Fundamentals & Program structures. Role of operating systems and compiler/assembler.	1	16.7.20		
	Stored program concept, Von-Neumann architecture		20.7.20		
U ni t-I	Basic number systems, Binary Arithmetic (Add, Sub, Mul, Div), Logic Gates, Boolean Algebra, BCD Addition, Binary Subtraction, 2's complement addition.	1	22.7.20		
	Concepts of Combinational Circuits: MUX, DEMUX, Decoder, Encoder, Sequential Circuit (Flip- Flop).	1	23.7.20		
	Assessment on this CHAPTER				Quiz
II	Data Representation and Computer Arithmetic				

	Signed representation of Fixed point numbers. Arithmetic overflow.	1	27.7.20	
U	Floating point representation of numbers (IEEE 754 standard), Overflow and underflow of floating point numbers.	1	29.7.20	Homework
	Fixed point multiplication -Booth's algorithm.	1	30.7.20	Homework
I I	Fixed point division - Restoring algorithms.	1	3.8.20	Homework
	Fixed point division -Non-restoring Algorithm	1	5.8.20	Homework
	Assessment on this CHAPTER			Assignment
III	Micro-operations and Design of ALU			
	HA, FA, serial and parallel adders, Design of adders – Ripple carry adder,	1	6.8.20	
	Carry look-ahead principles.	1	10.8.20	
	Adder-Subtractor Unit, Binary Incrementer Unit, Decrementer Unit,	1	12.8.20	
Uni t-II	Computer Registers. Bus (Data/ Address/ Control)	1	13.8.20	
I	Common Bus System	1	17.8.20	
	Design of the Arithmetic and logic Unit of ALU		19.8.20	
	Design of the shift Unit of ALU, Design of one stage of ALU		20.8.20	
	Assessment on this CHAPTER			Quiz
IV	Memory Organization			
	Memory Organization: Memory Hierarchy, Main Memory architecture, Implementation of CPU-memory interfacing, RAM and ROM chips.	1	24.8.20	
	Types of RAM and ROM chips, classification of Secondary memory	1	26.8.20	
Unit	Memory address map	1	27.8.20	Homework
Unit IV	Associative memory/ CAM: Cache memory	1	31.8.20	
	Memory read/write cycle, avg. access time calculation	1	2.9.20	
	Cache mapping techniques	1	3.9.20	
	Cache mapping techniques	1	7.9.20	
	Replacement methods, cache write	1	9.9.20	

	methods, techniques to reduce cache miss			
	Virtual memory	1	10.9.20	
	Assessment on this CHAPTER			Quiz/ Assignment
v	Computer Instruction Sets			Tibbigiinient
	Basic Instruction format, Immediate, Direct address, Indirect address, Effective addresses. Instruction Formats : Memory/ Register/Input-Output reference.	1	14.9.20	
	Types of Instruction: Data Transfer/ Data Manipulation/ Program Control	1	16.9.20	
V	Zero/One/Two/Three address instructions, RISC instructions.	1	21.9.20	Homework
	Introduction to RISC architectures, RISC vs. CISC architectures.	1	24.9.20	
	Fetch, decode and execute cycle	1	28.9.20	
	Assessment on this CHAPTER			Quiz/ Assignment
VI	Design of Control Unit			
Unit- VI	Design of control unit (CU) – hardwired and micro-programmed control	1	1.10.20	
	Assessment on this CHAPTER			Quiz
VII	Input Output Organization			
U n	Synchronous and Asynchronous data transfer, I/O operations - Concept of handshaking I/O	1	5.10.20	
i t	Modes of data transfer: programmed I/O, interrupt driven I/O.	1	7.10.20	
- V	Priority interrupt , Daisy chain, Polling	1	8.10.20	
I I	Direct Memory Access (DMA)	1	12.10.20	
1	Assessment on this CHAPTER			Quiz
VIII	Parallel Processing			
U	Pipelining	1	14.10.20	
it		1	19.10.20	
- V	Arithmetic pipeline	1	21.10.20	
II	Flynn's architecture	1	2.11.20	
1	Assessment on this CHAPTER			Quiz

RI

B. Daily Lesson Plan

Lecture	TOPIC/UNIT/ CHAPTER	Plan date	Execution date	Details of home work/assignment/mini project/ICT used/other	Details of topics that are beyond syllabus (if any)	Remarks
1.	Concept of basic components of a digital computer, Basic concept of Fundamentals & Program structures. Role of operating systems and compiler/assembler.	16.7.20	17.8.20			
2.	Stored program concept, Von-Neumann architecture	20.7.20	19.8.20			
3.	Basic number systems, Binary Arithmetic (Add, Sub, Mul, Div), Logic Gates, Boolean Algebra, BCD Addition, Binary Subtraction, 2's complement addition.	22.7.20	20.8.20	 Solve the following: 10101011+00111111=? 1000011+01010101=? 10001000-01101011=? 00110011-00011100=? Prove the following using Boolean algebra operations: X'Y'Z'+ X'Y'Z + XY'Z = Y'(X'+Z) Simplify the expression: X'Y'(X'+Y)(X'+X) Verify: xy' + yz' + zx' = x'y + y'z + z'x Solve:		

4.	Concepts of Combinational Circuits: MUX, DEMUX, Decoder, Encoder, Sequential Circuit (Flip- Flop).	23.7.20	21.8.20	Design a 16: 1 MUX using 4:1 MUX. Explain the differences between: MUX and DEMUX, Decoder and Encoder
5.	Signed representation of Fixed point numbers. Arithmetic overflow.	27.7.20	24.8.20	 Represent the binary positive number 1101011 in floating point 32-bit IEEE format. Represent the decimal number -0.75 in IEEE single precision format.
				ASSIGNMENT*
6.	Floating point representation of numbers (IEEE 754 standard), Overflow and underflow of floating point numbers.	29.7.20	26.8.20	ASSIGNMENT*
7.	Fixed point multiplication -Booth's algorithm.	30.7.20	27.8.20	Multiply (-9 X 6) using Booth's algorithm. Multiply (-3 X -12) using Booth's algorithm.
				ASSIGNMENT*
8.	Fixed point division - Restoring algorithms.	3.8.20	31.8.20	 Divide (6/3) using Restoring algorithm. Divide (20/3) using Restoring algorithm.
9.	Fixed point division -Non-restoring Algorithm	5.8.20	2.9.20	 Divide (15/5) using non-Restoring algorithm. Divide (24/7) using non-Restoring algorithm.

, serial and parallel Design of adders – arry adder,	6.8.20	4.9.20			
ok-ahead principles.	10.8.20	7.9.20			
ubtractor Unit, Binary nter Unit, Decrementer	12.8.20	9.9.20			
· Registers. Bus (Data/ Control)	13.8.20	11.9.20			
Bus System	17.8.20	14.9.20	Construct a common bus system using 4:1 MUX for 4 registers.		
of the Arithmetic and it of ALU	19.8.20	16.9.20			
of the shift Unit of ALU, f one stage of ALU	20.8.20	18.9.20	Design and explain one stage arithmetic logic shift unit of the ALU.		
Organization: Hierarchy, Main architecture, entation of mory interfacing, d ROM chips.	24.8.20	21.9.20			
of RAM and chips, ation of ry memory	26.8.20	23.9.20			
address map	27.8.20	25.9.20	ASSIGNMENT*		
ive memory/ CAM: Cache	31.8.20	28.9.20			
read/write cycle, avg. me calculation	2.9.20	29.9.20	ASSIGNMENT*		
apping techniques	3.9.20	30.9.20			
apping techniques	7.9.20	5.10.20			
apping techniques		7.9.20	7.9.20	7.9.20	7.9.20 5.10.20 RITP

				ASSIGNMENT*
24.	Replacement methods, cache write methods, techniques to reduce cache miss	9.9.20	7.10.20	HOMEWORK
25.	Virtual memory	10.9.20	9.10.20	
26.	Basic Instruction format, Immediate, Direct address, Indirect address, Effective addresses. Instruction Formats : Memory/ Register/Input-Output reference.	14.9.20	12.10.20	
27.	Types of Instruction: Data Transfer/ Data Manipulation/ Program Control	16.9.20	13.10.20	
28.	Zero/One/Two/Three address instructions, RISC instructions.	21.9.20	19.10.20	 Represent x = (a + b) * c in Zero/One/Two/Three address and RISC instruction format. Represent x = (a * b) / (c + d) in Zero/One/Two/Three address and RISC instruction format.
29.	Introduction to RISC architectures, RISC vs. CISC architectures.	24.9.20	2.11.20	
30.	Fetch, decode and execute cycle	28.9.20	4.11.20	
31.	Design of control unit (CU) – hardwired and micro-programmed control	1.10.20	09.11.20	
32.	Synchronous and Asynchronous data transfer, I/O operations - Concept of handshaking I/O	5.10.20	10.11.20	

33.	Modes of data transfer: programmed I/O, interrupt driven I/O.	7.10.20	11.11.20		
34.	Priority interrupt , Daisy chain, Polling	8.10.20	15.12.20		
35.	Direct Memory Access (DMA)	12.10.20	16.12.20		
36.	Pipelining	14.10.20	5.1.21	HOMEWORK	
37.	Hazards	19.10.20	6.1.21		
38.	Arithmetic pipeline	21.10.20	13.1.21		
39.	Flynn's architecture	2.11.20	27.1.21		

*Details of Assignments are given later.

*ASSIGNMENTS

Computer Organization (PCC CS302)

ASSIGNMENT-1

- **1.** Convert the following expressions into Zero/One/Two/Three address instructions, RISC instructions:
 - a. $P = [(A^*B+C)/(D+E^*C)]$
 - b. $P = [{(A*B+C) (D+B*C)}/(E*F)]$

ASSIGNMENT-2

- 1. Show the bus connection with a CPU to connect four RAM chips of size 256X8 bits each and a ROM chip of 512X8 bit size. Assume CPU has 8-bit data bus and 16-bit address bus. Clearly specify the generation of chip select signals.
- 2. Design a composite 1K×8 memory system using 256×2 RAM chips.
- 3. Design a composite 1K×8 memory system using two 256×8 RAM chips and two 256×8 ROM chips.
- 4. A magnetic disk pack has 12 surfaces out of which 10 are recordable. Each surface has 50 tracks and each track is divided into a number of sectors. The total capacity of the disk pack is 50000 K and capacity of each sector is 512 bytes. How many cylinders are present in the disk pack? How many sectors are present on each track?

ASSIGNMENT-3

- 1. A hierarchical cache-main memory subsystem has the following specifications:
 - Cache access time of 160ns
 - Main memory access time of 960ns
 - Hit ratio of cache is 0.9

Calculate the following:

- a. Average access time of the memory system
 - i) Considering only read cycle.
 - ii) Considering requests for both read and write.
- b. Efficiency of memory system.

2. A CPU has 32-bit memory address and a 256KB cache memory. The cache is organized as a 4-way set associative cache with cache block size of 16 bytes.

- a. What is the number of sets in the cache?
- b. What is the size (in bits) of the tag field per cache block?

c. What is the number of comparators required for tag matching (i.e. no. of bits required to identify different tag values)?

d. How many address bits are required for tag matching?

3. With the help of the following information, determine the size of the sub-fields (in bits) in the address for direct mapping, associative mapping and set-associative mapping:

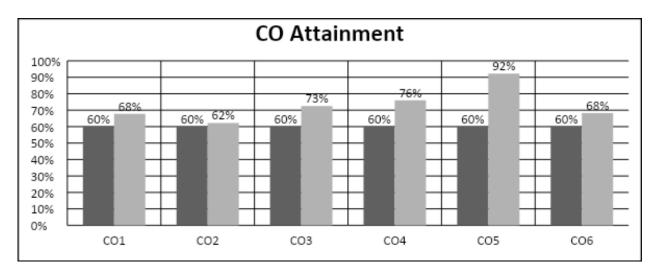
- 512 MB main memory and 2 MB cache memory
- · Address space of the processor is 256 MB
- The block size is 256 bytes
- There are 16 blocks in a cache set.

(x) Teaching Strategy / Method

- 1) Taking interactive classes through different examples.
- 2) Conducting Question answer session at the end of the class.
- 3) Real life application for better understanding.

(xa) Strategy to support weak students

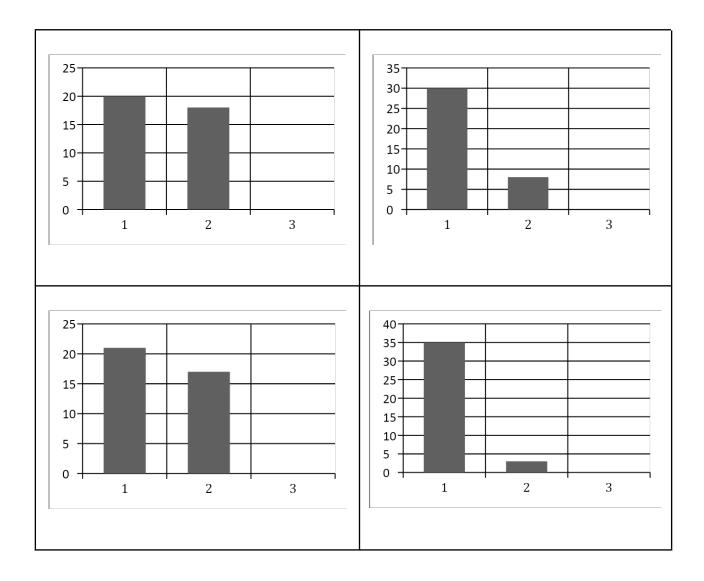
- 1) To engage the weak students in habit of studying, I give them some easy questions in regular basis.
- 2) Some weak students also have the problem of forgetting what they have learnt. In my class I always give some tips on how to recall and how to write systematically.
- 3) Weak students need special attention even after college hours. I always give some extra hours to weak students.

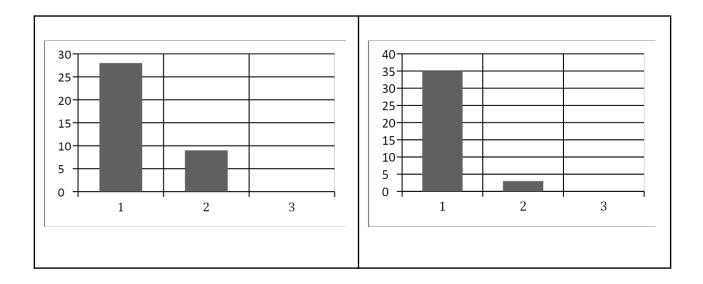

(xb) Strategy to encourage bright students

- 1) Have an extra challenge ready that allows the student to go deeper into the subject, learn a little more, or apply a skill he has just learned in a new way.
- 2) Some students are engaged with the final year students for their final projects.

(xc) Efforts to keep students engaged

- 1) Regular basis Home Work.
- **2)** 5-10 minutes spent in an every class for question answer session.
- **3)** Quiz on regular basis.
- 4) Some technical assignments are given group wise.


(xi) Analysis of Students performance in the course



(xii) Analysis of Students performance in the course (university results)

	Target Course Outcome%	TOTAL STUDENTS	TOTAL STUDENT WHO ATTAINED OUTCOME	% STUDENTS WHO ATTAINED THE OUTCOME	
Universit y Result	60%	45	44	98	

(xiii) Analysis of Student Feed Back

(xiv) Teacher Self-Assessment (at the completion of course)

From the analysis of the results obtained it can be seen that set targets for the course outcome have been achieved successfully by the students. Since this subject is a pre-requisite for Advanced Computer Architecture in 4th semester, more emphasis must be given for Parallel processing and pipelining.

(xiv) Recommendations/Suggestions for improvement by faculty

- More emphasis should be given to clear the concepts of Memory Unit.
- Tutorials must be incorporated in the syllabus.
- Increase the total contact hours for theory to 40 hrs, with 4L per week.

SI	Roll No.	Name	Atten	idance		intern amina		Assig nme
·			Total	Marks	1 st	2 nd	Avg.	nt / Quiz
1	11900119004	SEEMA NITISH RAO	75	3	16	25	20.5	6
2	11900119005	RAJ KISHOR PRASAD	83	4	21	28	24.5	9
3	11900119006	RAGHAV SOMANI	78	3	22	27	24.5	9
4	11900119007	MD AAMIR SHEKH	99	5	27	24	25.5	10
5	11900119008	KARAN SHARMA	79	3	23	26	24.5	8
6	11900119009	MOHAMMED SAHIL	79	3	20	24	22	10
7	11900119010	JAMIL AKHTAR LASKAR	86	4	22	23	22.5	7
8	11900119011	PAWAN KUMAR GUPTA	93	5	17	25	21	8
9	11900119012	DIPTARKA BHATTACHARYA	91	5	18	23	20.5	7
10	11900119013	NIVEDITA PRASAD	75	3	18	23	20.5	8
11	11900119014	ANIKET DEB	98	5	28	24	26	10
12	11900119015	DEEP DHAR	79	3	19	25	22	7
13	11900119016	HARSH KUMAR	86	4	20	22	21	10
14	11900119017	ANIKET DASGUPTA						
15	11900119018	RAHUL KUMAR	98	5	20	23	21.5	10
16	11900119019	NILASISH MOHANTI	95	5	14	25	19.5	10
17	11900119020	MD SHOAIB AKHTAR	91	5	15	25	20	10
18	11900119021	AMARTYA SARKAR	79	3	17	25	21	8
19	11900119022	ARKA ROY CHOUDHURY	84	4	15	26	20.5	8
20	11900119023	PARTHIB BOSE	81	4	14	23	18.5	9
21	11900119024	PARAMHANS SHAH	93	5	24	25	24.5	10
22	11900119025	SUVADITYA GUPTA	84	4	28	27	27.5	10
23	11900119026	NAUSHAD ALAM	79	3	24	28	26	5
24	11900119027	CHIRAG AGARWALLA	93	5	16	28	22	9
25	11900119028	Purabi Ghosh	91	5	28	22	25	9

26	11900119029	DEBARGHA DEY	76	3	27	23	25	9
27	11900119030	DEBARKO GHOSH	84	4	23	27	25	7
28	11900119031	FALGUNI SARKAR	81	4	15	26	20.5	9
29	11900119032	ALOK KUMAR SAH	93	5	25	24	24.5	9
30	11900119033	SAMARPAN GHOSH	91	5	22	26	24	10
31	11900119034	SOUMEN SARKAR	98	5	23	22	22.5	9
32	11900119035	SHIBABRATA BOSE	86	4	24	28	26	7
33	11900119036	ABIR PAUL	91	5	15	25	20	10
34	11900119037	SHANKHYA JYOTI DHAR	84	4	22	27	24.5	7
35	11900119038	BARNALI BASAK	81	4	22	26	24	9
36	11900119039	VED PRAKASH BHASKAR	84	4	22	22	22	7
37	11900119040	ARITRA KUMAR DATTA CHAUDHURY	81	4	28	23	25.5	9
38	11900119041	ABIJIT CHETTRI	88	4	19	25	22	8
39	11900119042	SUPRAKASH MAITY	86	4	15	23	19	9
40	11900119043	ANKIT ANAND	91	5	28	25	26.5	9
41	11900119044	ABHISHEK SUMAN	76	3	23	22	22.5	7
42	11900119045	ANURAG DAS	84	4	24	26	25	10
43	11900119046	GOVINDA DARSHAN	81	4	22	25	23.5	7
44	11900119047	SAYANI GHOSH	93	5	27	23	25	9
45	11900119048	SUMIT MAN	91	5	20	22	21	8

	LIST OF PRACTICALS Subject with code:Se	ection:
		 1e:
Sl.	Details of Experiment(s)	Hours allotted
P1	 Familiarization with IC chips: a) 4:1 MUX, b) 16:1 MUX c) Decoder d) Encoder e) Comparator Truth table verification and clarification from data-book. 	7 HRS
P2	Design of Adder/Subtractor composite unit	2 HRS
Р3	Design of BCD Adder	2 HRS
P4	Design of Carry Look-Ahead Adder	3 HRS
Р5	Use a multiplexer unit to design a composite ALU	3 HRS
P6	Use ALU chip for multi-bit arithmetic operation	3 HRS
P7	Implement read/write operation using RAM IC	3 HRS
P8	Cascade two ICs for a) vertical expansion b) horizontal expansion	3 HRS

Sl	Roll No.	Name		Ma	ırks	in ex	xper	imer	ntati	on		Total
			E1	E2	E3	E4	E5	E6	E7	E8		
			15	4	4	3	4	3	4	3		
1	11900119004	SEEMA NITISH RAO	13	4	4	2	3	3	4	3		36
2	11900119005	RAJ KISHOR PRASAD	14	4	4	2	4	3	4	3		38
3	11900119006	RAGHAV SOMANI	13	4	3	2	3	3	4	4		36
4	11900119007	MD AAMIR Shekh	13	4	3	1	4	3	3	4		35
5	11900119008	KARAN SHARMA	12	3	3	1	4	3	3	3		32
6	11900119009	MOHAMMED SAHIL	13	3	3	1	3	2	4	3		32
7	11900119010	JAMIL AKHTAR LASKAR	14	4	4	1	4	3	4	3		37
8	11900119011	PAWAN KUMAR GUPTA	13	4	4	2	3	3	4	3		36
9	11900119012	DIPTARKA BHATTACHARYA	15	4	3	2	4	3	4	3		38
10	11900119013	NIVEDITA PRASAD	15	4	4	2	4	3	4	3		39
11	11900119014	ANIKET DEB	14	4	3	3	4	3	4	3		38
12	11900119015	DEEP DHAR	12	3	3	1	4	2	3	2		30
13	11900119016	HARSH KUMAR	14	4	4	2	3	3	4	3		37
14	11900119017	ANIKET DASGUPTA (LEFT)	0	0	0	0	0	0	0	0		0
15	11900119018	RAHUL KUMAR	13	4	4	1	3	3	4	3		35
16	11900119019	NILASISH MOHANTI	14	4	3	2	3	3	4	3		36
17	11900119020	MD SHOAIB AKHTAR	14	4	4	1	4	3	4	3		37
18	11900119021	AMARTYA SARKAR	14	4	3	2	4	3	4	3		37
19	11900119022	ARKA ROY CHOUDHURY	14	4	4	1	4	3	4	3		37
20	11900119023	PARTHIB BOSE	13	4	4	2	3	3	4	3		36
21	11900119024	PARAMHANS SHAH	13	4	4	2	3	3	4	3		36
22	11900119025	SUVADITYA GUPTA	14	4	4	1	4	3	3	4		37
23	11900119026	NAUSHAD ALAM	14	4	4	1	4	3	3	3		36
24	11900119027	CHIRAG AGARWALLA	13	4	4	1	4	3	4	3		36

Sl	Roll No.	Name		Ma	ırks	s in	exp	eri	me	nta	tion	l	Total
			1	2	3	4	5	6	7	8	9	10	
			15	4	4	3	4	3	4	3			
25	11900119028	Purabi Ghosh	12	4	4	1	4	2	4	3			34
26	11900119029	DEBARGHA DEY	12	4	3	1	3	2	3	2			30
27	11900119030	DEBARKO GHOSH	13	3	3	1	3	2	4	3			32
28	11900119031	FALGUNI SARKAR	13	4	4	1	3	3	4	3			35
29	11900119032	ALOK KUMAR SAH	14	4	3	2	4	3	4	3			37
30	11900119033	SAMARPAN GHOSH	13	4	4	1	3	3	4	3			35
31	11900119034	SOUMEN SARKAR	15	4	4	2	4	3	4	3			39
32	11900119035	SHIBABRATA BOSE	13	4	4	2	3	3	4	3			36
33	11900119036	ABIR PAUL	13	4	4	1	3	3	4	3			35
34	11900119037	SHANKHYA JYOTI DHAR	12	4	3	1	4	3	3	3			33
35	11900119038	BARNALI BASAK	13	4	3	1	3	2	4	3			33
36	11900119039	VED PRAKASH BHASKAR	14	3	3	1	4	3	4	1			35
37	11900119040	ARITRA KUMAR DATTA CHAUDHURY	13	3	3	1	4	3	3	3			33
38	11900119041	ABIJIT CHETTRI	13	3	3	1	3	3	4	3			33
39	11900119042	SUPRAKASH MAITY	12	3	3	1	4	3	3	3			32
40	11900119043	ANKIT ANAND	12	3	3	1	4	2	3	2			30
41	11900119044	ABHISHEK SUMAN	12	3	2	1	0	1	2	1			22
42	11900119045	ANURAG DAS	12	3	3	1	4	2	3	2			30
43	11900119046	GOVINDA DARSHAN	14	4	4	2	3	3	4	3			37
44	11900119047	SAYANI GHOSH	13	4	3	1	4	3	4	3			35
45	11900119048	SUMIT MAN	13	4	4	1	3	3	4	3			35

RECORDS OF ASSIGNMENTS/QUIZ Paper Name: COMPUTER ORGANIZATION Paper Code: CS 601

Sl.	Roll No.	Name	A1	A2	A3	Sl.	Roll No.	Name	A1	A2	A3
1	1190011900 4	SEEMA NITISH RAO	1	0	1	25	11900119028	Purabi Ghosh	1	1	1
2	1190011900 5	RAJ KISHOR PRASAD	1	1	1	26	11900119029	DEBARGHA DEY	1	1	1
3	1190011900 6	RAGHAV SOMANI	1	1	1	27	11900119030	DEBARKO GHOSH	1	1	1
4	1190011900 7	MD AAMIR Shekh	1	1	1	28	11900119031	FALGUNI SARKAR	1	1	1
5	1190011900 8	KARAN SHARMA	1	1	1	29	11900119032	ALOK KUMAR SAH	1	1	1
6	1190011900 9	MOHAMMED SAHIL	1	1	1	30	11900119033	SAMARPAN GHOSH	1	1	1
7	1190011901 0	JAMIL AKHTAR LASKAR	1	1	1	31	11900119034	SOUMEN SARKAR	1	1	1
8	1190011901 1	PAWAN KUMAR GUPTA	1	1	1	32	11900119035	SHIBABRATA BOSE	1	1	1
9	1190011901 2	DIPTARKA BHATTACHARYA	1	1	1	33	11900119036	ABIR PAUL	1	1	1
10	1190011901 3	NIVEDITA PRASAD	1	1	1	34	11900119037	SHANKHYA JYOTI DHAR	1	1	1
11	1190011901 4	ANIKET DEB	1	1	1	35	11900119038	BARNALI BASAK	1	1	1
12	1190011901 5	DEEP DHAR	1	1	1	36	11900119039	VED PRAKASH BHASKAR	1	1	1
13	1190011901 6	HARSH KUMAR	1	1	1	37	11900119040	ARITRA KUMAR DATTA CHAUDHURY	1	1	1
14	1190011901 7	ANIKET DASGUPTA (LEFT)	0	0	0	38	11900119041	ABIJIT CHETTRI	1	1	1
15	1190011901 8	RAHUL KUMAR	1	1	1	39	11900119042	SUPRAKASH MAITY	1	1	1
16	1190011901 9	NILASISH MOHANTI	1	1	1	40	11900119043	ANKIT ANAND	1	1	1
17	1190011902 0	MD SHOAIB AKHTAR	1	1	1	41	11900119044	ABHISHEK SUMAN	1	1	1
18	1190011902 1	AMARTYA SARKAR	1	1	1	42	11900119045	ANURAG DAS	0	1	1
19	1190011902 2	ARKA ROY CHOUDHURY	1	1	1	43	11900119046	GOVINDA DARSHAN	1	1	1
20	1190011902 3	PARTHIB BOSE	1	1	1	44	11900119047	SAYANI GHOSH	1	1	1
21	1190011902 4	PARAMHANS SHAH	1	1	1	45	11900119048	SUMIT MAN	1	1	1
22	1190011902 5	SUVADITYA GUPTA	1	1	1						
23	1190011902 6	NAUSHAD ALAM	0	1	1						
24	1190011902 7	CHIRAG AGARWALLA	1	1	1						

NAME WITH ROLL NO.S OF STUDENT WHOSE ACADEMIC PERFOMANCE IS NOT SATISFACTORY

Sl.	Roll No.	Name of Student	Remedial measures taken by teacher
1	11900119004	SEEMA NITISH RAO	Discussions held on doubt clearing class related to the subject contents
2			
3			
4			

CERTIFICATE

I, the undersigned, have completed the course allotted to me as shown below

Sl. No.	Semester	Subject with Code	Total Units/ Chapters	Remarks

Date :	
	Signature of Faculty

Su	Submitted to HOD									
				Cer	rtificate b	уH	OD			
I,	the	under	signed,	certify	that	••••		••••		has
COI	nplete	ed the	course	work	allotted	to	him/	her	satisfactorily/	not
sat	satisfactorily.									

Date :	
	Signature of HOD

Submitted to Principal/Director

Date :	
	Signature of Principal/Director